



Carbohydrate Research 276 (1995) 443-447

## Note

# Conformational change of the β-D-glucan of Auricularia auricula-judae in water—dimethyl sulfoxide mixtures

Lina Zhang \*, Liqun Yang, Jinghua Chen

Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China Received 20 October 1994; accepted in revised form 25 April 1995

Keywords: β-D-Glucan; Auricularia auricula-judae; Conformational change

A polysaccharide designated  $\beta$ -D-glucan A, extracted from the plant Auricularia auricula-judae with 70% ethanol and then with aq 1% NaCl, has a backbone chain of  $(1 \rightarrow 3)$ - $\beta$ -D-glucose residues, two out of three glucose residues being substituted at O-6 by single glucosyl groups [1]. Measurements by light scattering, membrane osmometry, and viscometry show that the  $\beta$ -D-glucan A dissolves as a single-stranded helical structure in water and as a semi-flexible chain in dimethyl sulfoxide (Me<sub>2</sub>SO) [2]. Analysis of the data in terms of Yamakawa-Fujii-Yoshizak theory yielded  $1030 \pm 100$ nm<sup>-1</sup>,  $90 \pm 20$  nm,  $1.3 \pm 0.3$  nm, and  $0.26 \pm 0.03$  nm for the molar mass per unit contour length  $M_{\rm L}$ , persistence length q, diameter d, and contour length h per main-chain glucose residue of glucan A in water, and  $19 \pm 5$  nm for q and  $1.3 \pm 0.3$  nm for d in Me<sub>2</sub>SO, which was considered to indicate semi-flexibility. In this work, intrinsic viscosities  $[\eta]$ , number-average molecular weights  $M_n$ , and second virial coefficients  $A_2$  of the glucan A were investigated as functions of  $w_{\text{Me,SO}}$  (the mass fraction of  $Me_2SO$  in water- $Me_2SO$  mixtures). The  $M_n$  value is relative to the total number of molecules present, and so it can reflect changes in single- or multiple-stranded structure.

# 1. Experimental

Preparation of solutions.—The glucan A was isolated from the fruit body of Auricularia auricula-judae by the previously described method [1].

<sup>\*</sup> Corresponding author.

The fruit was cultivated in Fangshan (Hubei, China). The sample of glucan A, having weight-average molecular weight  $M_{\rm w}$  117 × 10<sup>4</sup> [1], was dissolved directly in water—Me<sub>2</sub>SO mixtures of desired composition ( $w_{\rm Me_2SO}$  from 0 to 1) at room temperature. The solutions thus prepared were kept for one day, and then used for measurements. Also used was a water-diluted Me<sub>2</sub>SO solution prepared by dissolving the sample in Me<sub>2</sub>SO and then diluting it with water ( $w_{\rm Me_2SO}$  from 1 to 0.4).

Membrane osmometry.—Osmotic pressures ( $\pi$ ) of the sample in water, Me<sub>2</sub>SO, and water-Me<sub>2</sub>SO mixtures were measured with an improved Bruss membrane osmometer by rapid static equilibrium at 25 ± 0.05°C [3]. The  $M_n$  and  $A_2$  values of the glucan A for a given  $w_{\text{Me}_2\text{SO}}$  were obtained from the intercept and slope of a plot of  $\pi/c$  against concentration (c).

Viscometry.—Zero shear-rate viscosities of the sample in water,  $Me_2SO$ , and water— $Me_2SO$  mixtures were determined by linear extrapolation with a low-shear two-bulb capillary viscometer supplied by the Beijing Chemistry Institute of Academic Sinica. Huggins and Mead–Fuoss plots were used to estimate the intrinsic viscosity  $[\eta]$  and the Huggins constant k' of the glucan A sample in the aforementioned solvent.

## 2. Results and discussion

The  $M_n$  and  $A_2$  values for the glucan A sample in water-Me<sub>2</sub>SO mixtures at 25°C are given in Table 1 and are plotted against  $w_{\text{Me}_2\text{SO}}$  in Fig. 1. Over the whole range of  $w_{\text{Me}_2\text{SO}}$  from 0 to 1, the values of  $M_n$  do not change appreciably. However, the values of  $A_2$  increase smoothly with increasing  $w_{\text{Me}_2\text{SO}}$  from 0 to 1, indicating an increase of interaction between the glucan A molecules and Me<sub>2</sub>SO molecules of water-Me<sub>2</sub>SO mixtures. These results indicate the absence of multiply stranded structures that could be dissociated in Me<sub>2</sub>SO or water-Me<sub>2</sub>SO mixtures, suggesting that single-stranded chains of glucan A are maintained in water, Me<sub>2</sub>SO, or water-Me<sub>2</sub>SO mixtures. The  $w_{\text{Me}_2\text{SO}}$  dependences of  $M_n$  and  $A_2$  of the glucan A differ from both the triple-stranded helix of schizophyllan [4] and the double-stranded helix of xanthan [5]. The  $M_w$  value of schizophyllan in water was ca. three times larger than that in Me<sub>2</sub>SO, and [ $\eta$ ] and k' in a very narrow  $w_{\text{Me}_2\text{SO}}$  range around 0.87 all decreased to the values observed in pure Me<sub>2</sub>SO. This demonstrated that the triple helix of schizophyllan dissociated abruptly to

| Table 1                                         |                                                             |
|-------------------------------------------------|-------------------------------------------------------------|
| Experimental results for osmotic pressure and v | viscosity for glucan A in water-Me <sub>2</sub> SO mixtures |

| W <sub>Me 2</sub> SO | $[\eta] \times 10^{-3}  (\text{mL/g})$ | k'   | $M_{\rm n} \times 10^{-4}$ | $A_2 \times 10^4  (\text{mL mol/g}^2)$ |
|----------------------|----------------------------------------|------|----------------------------|----------------------------------------|
| 0                    | 4.95                                   | 0.49 | 23.9                       | 4,5                                    |
| 0.2                  | 5.40                                   | 0.43 |                            |                                        |
| 0.3                  |                                        |      | 21.1                       | 4.8                                    |
| 0.4                  | 4.40                                   | 0.39 |                            |                                        |
| 0.6                  | 4.10                                   | 0.40 | 22.2                       | 5.1                                    |
| 0.8                  | 2.35                                   | 0.39 |                            |                                        |
| 1.0                  | 0.82                                   | 0.37 | 23.4                       | 5.3                                    |

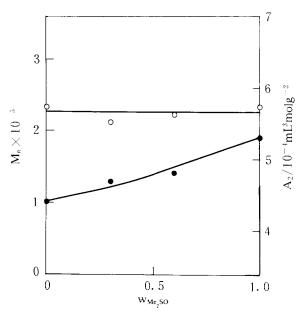



Fig. 1. Plots of  $M_n$  ( $\bigcirc$ ) and  $A_2$  ( $\blacksquare$ ) against  $w_{\text{Me}_2\text{SO}}$  for the glucan A sample in water-Me<sub>2</sub>SO mixtures at 25°C.

single chains at  $w_{\text{Me}_2\text{SO}} \sim 0.87$ , and that this dissociation was accompanied by an almost discontinuous increase in  $A_2$  [4].

The values of  $[\eta]$  and k' of the glucan A sample in water— $Me_2SO$  mixtures at 25°C are summarized in Table 1, and are plotted against  $w_{Me_2SO}$  in Fig. 2. The  $[\eta]$  value in a mixture of  $w_{Me_2SO}$  0.2 is appreciably larger than that in water, suggesting that the single helix of glucan A in this range is not broken and the chains are more expanded, on account of solvation by the water— $Me_2SO$  mixture. As  $w_{Me_2SO}$  increases further from 0.6 to 0.8, the  $[\eta]$  values decrease sharply and then approach the values observed in  $Me_2SO$ , suggesting that the single helical chains of glucan A change abruptly to semi-flexible chains in this range of  $w_{Me_2SO}$ . In addition, up to  $w_{Me_2SO}$  0.2, the k' values decrease sharply and then do not change significantly. Interestingly, k' at  $w_{Me_2SO} > 0.4$  approaches the values for a flexible polymer and k' values at  $w_{Me_2SO}$  0.2 are similar to those of triple- or double-helical polysaccharide [6,7]. The changes of k' indicate that the rigidity of the glucan chain decreases with an increase of  $w_{Me_2SO}$ . These data show that the solution of glucan A comprises only the intact single helix below  $w_{Me_2SO}$  0.2, with mixtures of single-helix and semi-flexible chains at  $w_{Me_2SO}$  between 0.6 and 0.8, and essentially semi-flexible chains at  $w_{Me_2SO}$  values of 0.8–1.0.

The values of  $[\eta]$  and k' obtained from the glucan A sample in water-diluted Me<sub>2</sub>SO are plotted against  $w_{\text{Me}_2\text{SO}}$  in Fig. 3. The  $[\eta]$  and k' values in the range of  $w_{\text{Me}_2\text{SO}}$  from 1.0 to 0.4 do not differ appreciably from those in Me<sub>2</sub>SO. This result shows that the semi-flexible chains in Me<sub>2</sub>SO do not re-form the single helix when the solution is diluted with water to  $w_{\text{Me}_2\text{SO}}$  0.4. In view of these results, the conformational change of the glucan A in water-Me<sub>2</sub>SO is presumed to be an irreversible conversion.

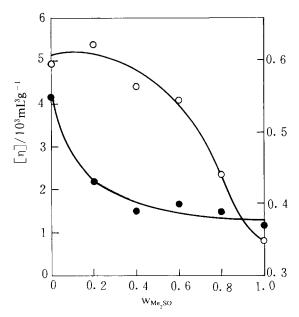



Fig. 2. Plots of  $[\eta]$  ( $\bigcirc$ ) and k' ( $\blacksquare$ ) against  $w_{\text{Me}_2\text{SO}}$  for glucan A in water–Me<sub>2</sub>SO mixtures at 25°C.

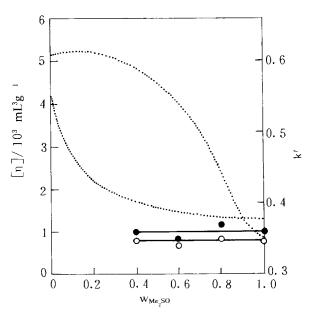



Fig. 3. Composition dependence of  $[\eta]$  ( $\bigcirc$ ) and k' ( $\bigcirc$ ) for glucan A in water-diluted Me<sub>2</sub>SO solution at 25°C. The dotted lines represent the data in Fig. 2.

Straub and Brant [8] reported preferential adsorption in the system of water— $Me_2SO$  and amylose, pullulan, and dextran as determined by gel permeation chromatography (GPC), and they found that all of these glucans preferentially adsorb  $Me_2SO$  above  $w_{Me_2SO}$  0.68, a concentration in which the water— $Me_2SO$  mixtures contain an excess of  $Me_2SO$ . Interestingly, the  $[\eta]$  values of glucan A in water— $Me_2SO$  mixtures decrease sharply in the  $w_{Me_2SO}$  range 0.6–0.8 as shown in Fig. 2. Moreover, rotary evaporation of a solution of glucan A in  $Me_2SO$  to dryness rendered it insoluble in water. On the basis of these findings, we conjecture that the single-helix chains of glucan A in water— $Me_2SO$  change to semi-flexible chains through breaking of the intramolecular hydrogen bonds that sustain the single helical structure, and this is accompanied by binding of  $Me_2SO$  molecules to the glucan chains. The  $Me_2SO$  molecules adsorbed on the glucan cannot be desorbed by heating or by dilution with water.

# Acknowledgement

This work was supported by the National Natural Science Foundation of China.

### References

- [1] L. Zhang, L. Yang, Q. Ding, and X. Chen, Carbohydr. Res., 270 (1995) 1-10.
- [2] L. Zhang and L. Yang, Biopolymers, in press.
- [3] L. Zhang, A. Hung, and J. Xu, J. Chem. Chin. Univ., 12 (1991) 1126-1129.
- [4] T. Sato, T. Norisuye, and H. Fujita, Macromolecules, 16 (1983) 185-189.
- [5] T. Sato, T. Norisuye, and H. Fujita, Polym. J., 17 (1985) 729-735.
- [6] T. Yanaki, T. Norisuye, and H. Fujita, Macromolecules, 13 (1980) 1462-1466.
- [7] L. Zhang, W. Liu, T. Norisuye, and H. Fujita, *Biopolymers*, 26 (1987) 333-341.
- [8] P.R. Straub and D.A. Brant, Biopolymers, 19 (1980) 639-653.